解决网络拥塞,Wi-Fi 6 采用了哪些黑科技
这个先听后说的机制,从 1997 年的第一代 Wi-Fi(802.11)就开始使用。然而,20 多年前的无线网络设备很少,没有人会去考虑,当设备增多时,竞争入网带来的网络拥塞问题。
Wi-Fi 的真正普及,是从 2008 年的 Wi-Fi 4(802.11n)开始。可以说,从那时起,Wi-Fi 真正成为家庭和企业互联网接入最常见的方式。支持 Wi-Fi 的设备型号数量,也成指数上升。
如今,Wi-Fi 设备在我们的生活中无处不在。随便打开家里的无线路由管理界面,可能就有不下 10 个 Wi-Fi 设备同时在线。
设备数量的增加,导致了网络拥塞、性能下降、延时升高等问题。这些问题在 Wi-Fi 5(802.11 ac)时代变得愈加严重。所以,在设计 Wi-Fi 6(802.11 ax)时,专家们专门针对网络拥塞问题进行了改进和创新。
那么,Wi-Fi 6 是通过哪些新技术来提高无线信道容量的呢?
正交频分多址 OFDMA
熟悉 Wi-Fi 的朋友们应该知道,Wi-Fi 的空口采用了正交频分复用(OFDM)的调制方式,即整个带宽由相互正交的子载波组成。
在 Wi-Fi 6 中,802.11 工作小组从 LTE 上引入了 OFDMA 的接入方式。就多了这么一个“A”字,可以说是给网络容量带来了质变。
如下面左边图所示,基于 Wi-Fi 5 的 OFDM 在任意一个时段,频道中的所有带宽只能分配给一个用户,哪怕这个用户的数据需求并不需要占用到全部带宽。
而其他用户接入网络时,需要等待下一个发送机会窗口(TXOP)。这在信道资源的使用上,是非常低效的,尤其是设备显著增多时。
▲ 图 1 OFDM 与 OFDMA 对比
OFDMA 改变了这一点。OFDMA 通过将子载波组成一个个资源单元(RU)的方式,频道可以把瞬时带宽动态划分给不同的用户。
比如上图右边这张图中,第一个 TXOP 分配给了用户 0 和用户 1,第二个 OP 全部分给了用户 2,接着第三个 TXOP 中,资源被平均分配给了四位用户。
OFDMA 一下子提高了瞬时支持的用户数量。
以下图的 20MHz 带宽为例,经过子载波分配,20MHz 可以最多支持 9 个设备同时接入,40MHz 则可以支持 18 个设备,以此类推。
▲ 图 2 采用 OFDMA 的 20MHz 下可用的资源单元数量
(Wi-Fi 6 中每个子载波是 78.125khz,20MHz 就是 256 个子载波。6 Edge 表示距离边缘有 6 个子载波作为保护带。)
可以说,OFDMA 对 Wi-Fi 信道的容量带来了质变。
BSS coloring
在过去的 Wi-Fi 技术中,小区间同频干扰(Co-Channel Interference,CCI)是影响信道容量的另一个重要因素。
上篇文章提到,CSMA / CA 的核心是采用先听后说(listen before talk,LBT),设备先对无线信道进行监听,在确保没有被占用的情况下,发送数据。
在多 AP mesh 组网(AP,Access Point,无线接入点)的情况下,小区内的设备会收听到临近同频道的小区的干扰信号,导致设备会误认为本小区此时的无线信道正在被占用,于是停止发送。
这种干扰,在网络没有优化好或者可用的频道数量很少的情况下,会显著降低网络容量。
如下图所示,4 个 Wi-Fi AP 采用了三频道组网。但由于可用的频道只有三个,AP1 和 AP2 不得不都部署在同样的频道 Channel 6 上,这时 AP2 的信号对于归属于 AP1 中的用户设备来说就是干扰 ——Overlapped Basic Service Set(OBSS,重叠基本服务单元,可以理解为频率相同的重叠小区)。
▲ 图 3 三频组网下的同频道干扰场景
当用户设备与 AP1 进行通信时,由于设备收到同频的 AP2 的干扰信号,用户设备会误认为 AP1 的小区此时正在被小区内其他设备占用,于是等待下一个时间段发送。这么一来,网络性能就降低了。
不仅仅是多小区组网,这种干扰问题也会出现在 Wi-Fi AP 很靠近的情况下。比如你家中虽然只有一台无线 AP,但如果隔壁邻居也有 AP 跟你部署在一样的频道上,CCI 也会导致你的设备接入成功率下降。
可悲的是,大多数厂商在设备出厂时,都将 Wi-Fi AP 的默认频道放在第一个频道上。这样的话,干扰问题就更严重了。如果你发现这种问题,不妨更改一下家里 Wi-Fi AP 的频道,这样会明显减少干扰,提升网速。
Wi-Fi 6 的解决方案,是通过在 MAC 层引入了 BSS Coloring(小区颜色编码)技术,来区分本小区和干扰小区。也就是说,在同频道工作,存在相互干扰的 AP,会附上不同的颜色码,加以区分。
当用户设备收到 AP 信号后,会对比其收到的颜色与目前关联的 AP 颜色是否一致。颜色一致时,用户才会认为信号是本小区内信号。
如果收到的信号的颜色与关联的 AP 颜色不同,用户判定该信号属于干扰信号。如下图所示,由于采用了不同颜色码,绿色小区的频道 1 不再受到临近小区频道 1(蓝色和红色)的干扰。
▲ 图 4 Wi-Fi 6 中的 BSS Coloring 技术
看到这里你可能要问,就算标了色,但干扰信号还是会收到啊,怎么解决干扰呢?
上篇文章我们说过,Wi-Fi 中的先听后说,分两个检测门限,分别检测信号功率(SD)和信道能量(ED)。这两个门限在以往的 Wi-Fi 技术标准和设备中,是固定的,无法有效区分是本小区的信号还是临近小区的信号(下图左边)。
▲ 图 5 差异化信号检测门限和动态调整
Wi-Fi 6 采用了差异化检测门限,给不同颜色码的小区分配不同的检测门限(上图右边)。
具体的方法是,将使用同频道的干扰小区信号检测门限升高,同时把同色的本小区内信号检测门限降低。通常周边小区的干扰信号由于传播衰减,信号强度会较低,不会超过相对较高幅度的检测门限。而本小区内信号用较低的检测,有助于提高检测灵敏度。
通过这种差异化的门限检测,信道就不会被误判为被占用,从而提高了信道容量。
信号检测门限同时可以随着网络环境进行动态调整,可以说是一种自感知网络的实现形式。
多用户协调,多进多出(MU-MIMO)
单用户多路输入输出(SU-MIMO),从 Wi-Fi 5 开始被引入。AP 和终端使用多路天线来发送和接收,多路天线使用同频但彼此正交的信号来提高信道使用率。
手机一般会用两根 Wi-Fi 天线,支持 2x2 MIMO—— 两路发送和接收。
AP 由于不受体积和电源限制,可以做到 4 甚至 8 根天线。MU-MIMO 中的 MU 指的是多用户(Multiple Users),一个 AP 使用同样的信道来服务多个不同用户,每路用户分配 1-2 根天线,每根天线之间信号正交,互不干扰。
▲ 图 6 AP 使用 MU-MIMO 来复用信道
Wi-Fi 5 虽然在 wave 2 的标准更新中增加了下行 MU-MIMO,但大多数厂商并没有在设备上去实现 MU-MIMO 功能。
在 Wi-Fi 6 时代,MU-MIMO 终于得到了应用,并被扩展到了上行,即多终端设备不仅可以同时接收,也可以利用相同信道同时向 AP 发送数据。
有了 MU-MIMO 和 OFDMA,那么自然就会想到:如果 AP 能够协调其服务的多用户同时对信道进行访问,而不是一个个独立来竞争请求的话,信道使用率还会提高。
如下图所示,AP 通过发送一个触发信号,来同步需要接入的 4 位用户的开始发送和结束时间。四位用户不再相互竞争信道资源,而是采用 MU-MIMO 或者 OFDMA 的方式,与 AP 进行通信。
▲ 图 7 Wi-Fi 6 的多路收发协调功能
结语
Wi-Fi 6,是 Wi-Fi 历史上最重要的一次更新。
即使是目前最新的 Wi-Fi 7,也仅仅是对 Wi-Fi 6 的主要特性进行一些加强。
Wi-Fi 6 的更新还有很多,比如 1024QAM 调制,目标设备唤醒时间(Target Wake Time)等等,今天我们只介绍了跟网络容量相关的特性。
网络容量上的提升,是我认为 Wi-Fi 6 众多更新中最有用的功能,同时也是企业和个人用户升级 Wi-Fi 网络和终端的重要原因。
为了提高系统容量,Wi-Fi 工程师们想尽了一切物理层和 MAC 层的方法。但是,最终容量还是受限于香农极限。
要进一步从根本上增加网络容量,只能从增加频谱的角度来解决。尤其是现有的 2.4GHz,由于大量蓝牙、遥控器等无线设备的使用,已经变得拥挤不堪。而 5GHz,又存在诸多访问限制。
频谱资源对于 Wi-Fi 系统来说,变得非常有限。这就促进了 Wi-Fi 6E 的诞生。
Wi-Fi 6E,是将现有的 Wi-Fi 6 拓展到 6GHz(5925-7125 MHz)上,一下子将频谱的容量增加了三倍。同时,6GHz 也是 802.11 组织为 Wi-Fi 7(IEEE802.11 be)做的前期铺垫。